
COMPUTER SCIENCE THEORY AND PROGRAMMING

Why the One Needs the Other, andWe AllNeed to Know a Bit of Both

Prof. Brink van derMerwe

 April 2016

COMPUTER SCIENCE THEORY AND PROGRAMMING: WHY THE ONE
NEEDS THE OTHER AND WE ALL NEED TO KNOW A BIT OF BOTH

Inaugural lecture delivered on 25 April 2016

Prof. Brink van der Merwe
Department of Computer Science
Faculty of Science
Stellenbosch University

Editor: SU Language Centre
Printing: SUN MeDIA
ISBN: 978-0-7972-1595-5
Copyright ©2016 Brink van der Merwe

2

Biographical information

Brink van der Merwe is a full Professor in Computer
Science at the University of Stellenbosch and part of
an established research group working at the intersec-
tion of algebra, automata theory, and machine learning.
A�er studying actuarial science at the University of
Stellenbosch (1985–1987) and working for the insur-
ance company Sanlam, he moved to the USA for �ve
years and received his PhD in algebra at Texas A&M
University in 1995 under the supervision of Carl Max-
son. From 1996 to 2001, he was a lecturer and later
a senior lecturer at the Mathematics Department at
the University of Stellenbosch, before moving to Com-
puter Science. He served as head of Computer Science
from 2005 to 2007. Since 2008, six students received
their MSc degrees in Computer Science under his su-
pervision, �ve of them cum laude. He has produced
twenty-two peer-reviewed journal articles and ��een
peer-reviewed publications in conference proceedings.
He is on the editorial board of the Journal of Universal
Computer Science, is on the programme committee for
the Conference on Implementation and Application
of Automata, and regularly acts as a reviewer for in-
ternational conferences and journals. He is married
to Antoinette van der Merwe and they have one son,
Alexander.

3

4

Abstract

It is not o�en that I get the opportunity to write
about a wide range of topics, some that I know
only a little about, and picking only the parts that
support the story I want to tell. My aim is to write
in such a way that some of the content (at least
Section 2 and the conclusion) will be accessible to
almost everyone. I will focus on what computer
science is, including a bit of history, and the inter-
play between theory and practice. I will also point
out some of the common misconceptions of what
the theory of computability and complexity tell us
about practical problems, especially in relation to
regular expressions.

1 Introduction

I will follow the unconventional approach of sim-
ply giving an outline of what I will discuss in this
introduction, and having the real introduction in
the next section.

In the next section I will start with a discussion
on what computer science is since this is a widely
misunderstood topic and of general interest. From
this discussion, it will become clear that algorithms
– what they can do and what not – and algorith-
mic e�ciency issues, form a large part of computer
science. A�er this, I will focus on the concept of
ambiguity in both context-free grammars (a for-
malism used to describe the syntax of computer
programs) and in regular expressions. �e aim is
to explain the interplay between computer science
theory and programming, especially for regular ex-
pressions. Regular expressions (or more precisely,
regular grammars) and context-free grammars are
the simplest, and most useful, grammars in the
Chomsky hierarchy [2, 5]. �e Chomsky hierar-

chy is a containment hierarchy of classes of formal
grammars studied within the �elds of computer sci-
ence and linguistics. Since some useful properties
that context-free grammars might or might not
have cannot be checked algorithmically, we will
focus mainly on the more well-behaved regular
expressions.

No general audience-focused discussion deal-
ing with algorithms, and speci�cally algorithmic
complexity, is complete without mentioning the fa-
mous open P versus NP problem. �e P versus NP
problem is one of the seven Millennium Prize Prob-
lems selected by the Clay Mathematics Institute,
and which carries a million dollar prize [9]. It asks
if problems solvable in non-deterministic polyno-
mial time, i.e., NP problems (or equivalently, prob-
lems whose solutions are veri�able in polynomial
time), are also solvable in polynomial time. I will
thus also show the relevance of this open problem
to regular expressions.

2 What is Computer Science?

In 2004, former US Secretary of Education Richard
Riley predicted [14]: “�e top 10 in-demand jobs
in the future don’t exist today. We are currently
preparing students for jobs that don’t yet exist, us-
ing technologies that haven’t been invented, in or-
der to solve problems we don’t even know are prob-
lems yet.”

Without mentioning computer science, this quo-
tation might be enough to convince most people
that computer science should from part of almost
every degree programme at universities and other
educational institutions. But it also adds to the
overall confusion about ICT (informations and
communications technology) and computer sci-
ence. So what is the di�erence between these

5

two disciplines? ICT has a focus on spreadsheets,
databases, Powerpoint, safety on the Internet, etc.
It is currently the dominant of the two disciplines
in terms of what is being taught at school and ter-
tiary level.

Computer science, which has a focus on com-
putation, algorithms, data structures, programs
and skills in programming, communication and
coordination, computational thinking, abstraction,
modeling, design, etc., is barely taught. Every child
learns, for example, science from primary school
level onwards, not because all of them will become
physicists or chemists, but because they are em-
powered by understanding how the world works
around them. But the same is also true of compu-
tation and computer science in general (beware,
many other disciplines might claim this falsely!) –
it is a generic skill required in almost every work
environment. We need it to understand both the
digital and natural world.

To enforce the point, I quote from Sedgewick
and Wayne [15]: “�e basis for education in the last
millennium was reading, writing, and arithmetic;
now it is reading, writing, and computing.” US
President Barack Obama has also promoted the im-
portance of programming with the statement [11]:
“If we want America to stay on the cutting edge,
we need young Americans to master the tools and
technology that will change the way we do just
about everything.”

Given the focus on the importance of program-
ming and computer science in general, it is interest-
ing to note that the UK is currently (since Septem-
ber 2014) the only country having computer sci-
ence as part of its school curriculum [12]. It begins
at primary school, with a focus on fundamental
principles and concepts of computer science, in-
cluding abstraction, logic, algorithms, and data

representation.
No discussion on what constitutes computer sci-

ence is complete without a brief mention of Ada
Lovelace, the only legitimate child of the poet Lord
Byron, and commonly regarded as the �rst com-
puter programmer. Ada realized that program-
ming applies to (almost) any process based on log-
ical symbols, and with Charles Babbage, we regard
her as the �rst computer scientist. In February
1843, Charles Wheatstone, a friend of Babbage, sug-
gested that Ada should produce an English transla-
tion of an article by Luigi Menabrea on Babbage’s
Analytical Engine, for Taylor’s Scienti�c Memoirs.
�e translated article, with notes added by Ada
Lovelace, was published in September 1843.

Lovelace’s notes were labeled from A to G, and
Note G (see Figure 2) gave an algorithm to com-
pute Bernoulli numbers – describing step by step
how the algorithm is fed into the Analytical En-
gine, including two recursive loops. �e published
program was a numbered list of coding instruc-
tions, which included destination registers, opera-
tions, and comments. �e only help came from her
spouse (William King-Noel, �rst Earl of Lovelace),
who did not understand the mathematics or pro-
gramming, but was willing to trace in ink what
Ada wrote in pencil.

Now we move ahead 140 years and discuss how
a cover page story published in Time magazine in
1984 links to algorithms and the theory of com-
putability.

3 TheAlgorithm Shaving ThoseAlgorithms

Not Shaving Themselves

In 1984, Time magazine ran a cover story on com-
puter so�ware. �ey quoted the editor of a certain
so�ware magazine as saying: “Put the right kind of

6

Figure 1: Ada Lovelace’s diagram from Note G, describing an algorithm to compute Bernoulli numbers on
Charles Babbage’s Analytical Engine.

Algorithm 1 InverseHalt
1: function InverseHalt(program)
2: if Halt(program, program) then
3: go into in�nite loop
4: else
5: return

so�ware into a computer, and it will do whatever
you want it to. �ere may be limits on what you
can do with the machines themselves, but there are
no limits on what you can do with so�ware.” �at
there are no limits to what so�ware can do is of
course not true, which follows more or less from
the barber’s paradox [8].

Although most people will be familiar with the
barber’s paradox, let us brie�y recall it. Suppose a
given town has just one barber, who is male. In this
town, every man shaves and does so by either shav-
ing himself or being shaved by the barber. Also,
the barber shaves all those and only those men in
town who do not shave themselves. So, who shaves
the barber?

Let us rephrase this in terms of an algorithm
which we will call InverseHalt, listed as Algorithm 1.

To de�ne InverseHalt, we assume that we have an
algorithm Halt(P, I) that returns true if we run
program P with input I, and P halts, and false
otherwise. So, what happens when we call the algo-
rithm InverseHalt with itself as input? Will it halt
or not?

It turns out that InverseHalt(InverseHalt) halts if
Halt(InverseHalt, InverseHalt) returns false, that
is, if InverseHalt does not halt when given itself
as input. Similarly, InverseHalt(InverseHalt) does
not halt if Halt(InverseHalt, InverseHalt) returns
true, that is, if InverseHalt does halt when given
itself as input.

To see the similarity with the barber’s paradox,
simply regard halting as shaving. Also, Inverse-
Halt(program) halting is equivalent to the barber
shaving program, and Halt(program, program) re-
turns true if program shaves itself, and false oth-
erwise. To avoid a contradiction, we have to as-
sume that we cannot have a subroutine Halt(P, I)
with the above-speci�ed properties. �is conclu-
sion is summarized by saying that the halting prob-
lem is undecidable.

�e self-referential nature of the halting prob-

7

lem is self-evident. �e halting problem is also
similar to Russell’s paradox from set theory, which
asks if the set of all sets that are not members of
themselves, is a member of itself. Although the un-
decidability of the halting problem, or at least the
presentation given above, seems rather esoteric in
nature, similar ideas can be used to show that more
practical problems are not solvable algorithmically.
In fact, Rice’s �eorem [13] states that there exists
no automatic method that decides, with generality,
non-trivial questions on the behavior of computer
programs.

One such example, obtained from Rice’s �eo-
rem, by being imprecise and blurring the lines be-
tween programs and context-free grammars, deals
with knowing if a particular context-free grammar
(the formalism typically used to describe syntax
in computer science), assigns at most a single syn-
tactic description to a given input program. �is
property of context-free grammars is formulated
by saying that it is undecidable if a given context-
free grammar is ambiguous.

4 Ambiguity of Context-Free Grammars

In this section, we explain what it means for a
context-free grammar to be ambiguous. Instead
of using the well-known example of prepositional
phrase attachment ambiguity from the Groucho
Marx movie, Animal Crackers (1930) – “While
hunting in Africa, I shot an elephant in my pajamas.
How he got into my pajamas, I don’t know” [18]
– to explain the concept of ambiguity of context-
free grammars, I will rather consider the sentence:
“Alex ate sushi with chopsticks.”

Consider the toy context-free grammar in Fig-
ure 4. Here ⟨NP⟩, ⟨VP⟩, ⟨DT⟩, ⟨PP⟩, ⟨V⟩, ⟨N⟩,
and ⟨NNP⟩ denote a noun phrase, verb phrase, de-

⟨S⟩ → ⟨NP⟩ ⟨VP⟩

⟨NP⟩ → ⟨DT⟩ ⟨NP⟩ | ⟨NP⟩ ⟨PP⟩ | ⟨N⟩ | ⟨NNP⟩

⟨VP⟩ → ⟨V⟩ ⟨NP⟩ ⟨PP⟩ | ⟨V⟩ ⟨NP⟩

⟨PP⟩ → ⟨P⟩ ⟨NP⟩

⟨N⟩ → “boy” | “chopsticks” | “sushi”

⟨NNP⟩ → “Alex”

⟨V⟩ → “ate”

⟨P⟩ → “with”

⟨DT⟩ → “the”

Figure 2: A toy context-free grammar.

S
PPPPP
�����

NP

NNP

Alex

VP
XXXXXX##
������

V

ate

NP

N

sushi

PP
aaa
!!!

P

with

NP

N

chopsticks

Figure 3: �e intended parse tree for the sentence:
“Alex ate sushi with chopsticks.”

terminer, prepositional phrase, verb, noun, and
proper noun, respectively. �e grammar rules gen-
erate sentences by starting with ⟨S⟩, and by replac-
ing the symbol appearing in the le�-hand side of
a rule by the right-hand side. �us, the reason
for calling this sentence generating mechanism
context-free becomes clear – rules are applied with-
out taking context into account.

In our particular case, the given grammar is am-
biguous, since the parse trees given in Figures 3
and 4 provide two ways of assigning syntax to the

8

S
PPPP
����

NP

NNP

Alex

VP
PPPP
����

V

ate

NP
PPPP
����

NP

N

sushi

PP
aaa
!!!

P

with

NP

N

chopsticks

Figure 4: An unlikely parse tree for the sentence:
“Alex ate sushi with chopsticks.”

sentence: “Alex ate sushi with chopsticks.” Since no
algorithm can tell us in general whether a context-
free grammar is ambiguous or not, and since some
context-free grammars are inherently ambiguous –
that is, they cannot be replaced by equivalent un-
ambiguous grammars – the context-free grammar
formalism is not as useful as theoreticians might
want us to believe. In practice, there are two gen-
eral approaches to deal with the ambiguity issue of
context-free grammars. In many cases, such as in
the case of parsing a computer program, fairly ad
hoc mechanisms are used to select a given parse
from the potentially multiple ways of assigning syn-
tax to given input. Alternatively, a formalism that
is never ambiguous is used, such as the fairly recent
notion of parsing expression grammars, developed
by Bryan Ford around 2004 [6].

In the next section, we discuss ambiguity in the
case of regular expressions. In this setting, am-
biguity is not an undecidable property, but it has
led to so�ware implementations that are vulner-
able to algorithmic complexity attacks. �is vul-
nerability occurs because it could in practice take
prohibitively long to try and match a string with a

highly ambiguous regular expression (also known
as an evil regular expression).

5 Examples of the Mismatch between The-

ory and Practice in Regular Expressions

In this section I give a �avor of some of my re-
cent work on regular expressions, a formalism that
one may describe as wildcards on steroids. In gen-
eral, a regular expression is a special text string
for describing a search pattern, used for searching
through (usually textual) data.

For example, the regular expression [0-9]+ ,
where + indicates “one or more times”, makes it
possible to search through a text document for any
integer number. Other familiar examples include
patterns to ensure that a user-supplied e-mail ad-
dress (on a web form) is of a valid format, or that
a chosen password is complicated enough. It is
also extensively used in web scraping, i.e. getting
computer programs to look for and capture text
from online resources mentioning say a particular
person or company.

I will describe on a high level the discrepancy
between regular expressions in theory and prac-
tice, and how they nowadays seem to work most of
the time in practice, and it is now simply a matter
of also making them work in theory all the time.
Jamie Zawinski, a well-known so�ware developer,
summarizes the use of regular expressions as fol-
lows [19]: “Some people, when confronted with a
problem, think ‘I know, I’ll use regular expressions.
Now they have two problems.’ ”

In the following three subsections, I give exam-
ples of situations where there is a big discrepancy
between how regular expression are usually de-
scribed, in theory, versus how they work in pro-
gramming. In the �rst subsection, I brie�y discuss

9

exponentially ambiguous regular expressions, also
known as evil regular expressions. Evil regular ex-
pressions might lead to so�ware that is vulnerable
to denial of service attacks. In the next subsec-
tion, I discuss the link between back references in
regular expressions and the P versus NP problem.
Back references [7] are used to force a regular ex-
pression to repeat a previous submatch later in the
same regular expressions. Finally, I discuss how
regular expressions parse input during matching,
in contrast to how theory regards regular expres-
sions only as a pattern matching formalism.

5.1 Evil Regular Expressions

First, I give an example to explain ambiguity in reg-
ular expressions. Assume that the symbol ? indi-
cates that a sub-pattern should be matched at most
once. �en (subpattern? subpattern?) indi-
cates that we want to match subpattern between
zero and two times. But this regular expression is
ambiguous, since if we want to match subpattern

only once, we can do it either with the �rst or sec-
ond subpattern. In this case, we can remove the
ambiguity by rewriting the regular expression as
(subpattern subpattern?)? .

Evil regular expressions are those where the
worst-case ambiguity grows exponentially in the
length of the input string we are trying to match.
For example, consider (ab)*|(a|b)* , where
| denotes “or”, and * denotes “zero or more

times”. �is regular expression has exponential
ambiguity, since on an input string of the form
ababab . . . abx, all possible ways of matching each
of the input a’s with each of the subexpressions
(ab) or (a|b) are typically attempted by reg-

ular expression matching so�ware. Note that
(ab)*|(a|b)* and (a|b)* are not equivalent.

�e regular expression (ab)*|(a|b)* indicates
if the input string is a sequence of pairs ab, and if
not, it checks if it consists only of a’s and b’s.

�e example of an evil regular expression, given
above, was selected to keep the exposition short
and easy. Readers that are hardcore programmers
should convince themselves that the following reg-
ular expression for e-mail address validation, split
over three lines for formatting reasons, is also evil:

email =([a-zA-Z0 -9_\.\ -])+\@

(([a-zA-Z0 -9\ -])+\.)+

([a-zA-Z0 -9]{2 ,4})+

5.2 P versusNP – SometimesNP-Hard Prob-

lemsMightNot Be ThatHard

No general audience article on theoretical com-
puter science will be complete without saying
something about P versus NP. �e P versus NP
problem is a major unsolved problem in computer
science. It asks whether every problem whose so-
lution can be quickly veri�ed by a computer can
also be quickly solved by a computer.

Stephen Cook gave the precise statement of the
P versus NP problem in 1971 [3]. It is worth having
a look at [20], which collects links to papers that
try to settle the P versus NP question (in either
way). �ey list 107 fairly reputable papers that try
to contribute to the P versus NP question. Among
these papers, there is only one paper, by Mihalis
Yannakakis, that has appeared in a peer-reviewed
journal, and that shows that a certain approach to
settling the P versus NP question will never work
out.

In computability and computational complexity
theory, a reduction is an algorithm for transform-
ing one problem into another. It is used to show

10

that the second problem is at least as di�cult as
the �rst.

Below, I will give a slightly modi�ed version of
a reduction from SAT (the Boolean Satis�ability
Problem) to the problem of deciding whether a
regular expression (with back references) match
a given input string. I obtained this reduction
from Perl lover’s webpage of Perl paraphernalia
[10]. �is reduction shows that matching with Perl-
like regular expressions is computationally at least
as hard as the deciding whether a boolean logic
formula is satis�able (which is NP-complete).

To make the discussion concrete, let us consider
the following boolean logic formula:

F ∶= (x1 ∨ x2 ∨ ¬x3)
∧ (x1 ∨ ¬x2 ∨ x3)
∧ (¬x1 ∨ ¬x2 ∨ x3)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3).

Note that ∨, ∧ and ¬ denotes “or”, “and”, and “not”,
respectively. By setting x1 to true, and x2 and x3
to false, we note that F is satis�able.

We translate F to the string s and regular ex-
pression R (spread over �ve lines for typesetting
reasons) given below. �e relationship between F
and the last four lines of R is fairly direct, and the
reasons for picking s and the �rst line of R as below
will become clear soon.

s = xxxxxx;xx,xx,xx,xx

R = (x|xx)(x|xx)(x|xx).*;

(\1|\2|\3x),

(\1|\2x|\3),

(\1x|\2x|\3),

(\1x|\2x|\3x)

Note that . denotes any character, and thus, .*

denotes any sub(string).

Now we need to convince ourselves that the
boolean logic formula F has a satisfying assign-
ment precisely when the regular expression R can
match the string s. Note that, in the regular ex-
pression R, \1 , \2 , and \3 refer to what gets
matched by each of the �rst three subexpressions
(x|xx) , respectively. Also, given the position of

the symbol ; , and each of the three symbols ,

in s and R, respectively, we have that each of the
subexpressions (\1|\2|\3x) , (\1|\2x|\3) ,
(\1x|\2x|\3) and (\1x|\2x|\3x) have to

match the string xx. Furthermore, xx and x corre-
spond to true and false, respectively.

By letting the �rst of the three consecutive subex-
pressions (x|xx) of R match xx, and letting the
other two match x – i.e., \1 becomes xx, and \2

and \3 both become x) – we note that each of

(\1|\2|\3x)

(\1|\2x|\3)

(\1x|\2x|\3)

(\1x|\2x|\3x)

can match xx (recall that | denotes “or”), which
corresponds to being able to make each of four
clauses in F true.

Although regular expression matching (with
back references) is thus at least as hard as an NP-
complete problem, could it be implemented e�-
ciently, even though the current state of the art
matcher re2 [4], developed at Google, has various
shortcomings? Since regular expressions used in
practice have only a small number of back refer-
ences (i.e., subexpressions of the form \1 , \2 ,
etc.), it should be noted that the NP-hardness of
regular expression matching in general does not
exclude the possibility of e�cient so�ware imple-
mentations of regular expression matchers.

11

We encounter NP-hard problems o�en in real
life and we should not believe the common miscon-
ception that these problems cannot be solved in
practice. Although space limitations do not allow
the discussion of these topics, parametrized com-
plexity, approximation, or randomised algorithms
should be used when we encounter NP-hard prob-
lems; see [16] for a gentle introduction.

5.3 Regular ExpressionMatching as a Form

of Parsing

Few formal language research topics have greater
practical reach than regular expressions. As a re-
sult, the practical implementations have in many
ways surged ahead of research, with new features
that require underpinnings di�erent from the orig-
inal theory. Most practical implementations of reg-
ular expressions matchers perform regular expres-
sion matching as a form of parsing, using capturing
groups, outputting what subexpression matched
which substring.

In Perl, we can for example match an email ad-
dress and place the username and hostname in $1

and $2 as follows:

if ($email =~/([^@]+)@(.+)/){

print "Username is $1\n";

print "Hostname is $2\n";

}

A popular implementation strategy is a worst-
case exponential-time depth-�rst search for match-
ing and �nding a correct way of parsing the input
string. Complications are introduced by the match-
ing semantics dictating a single output string for
each input string, using rules to determine a “high-
est priority” match among the potentially expo-
nentially many possible ones. In practice, regular

expressions are used to match and parse input, but
this is far more sophisticated than their theoretical
counterparts. Some ideas on how to close this gap
between theory and practice are given in [1].

In Figure 5, a Java-based state machine for the
regular expression (a*)* is given. �e regular
expressions (a*)* will, of course, never be used,
but it is simply chosen to keep the exposition as
simple as possible. Also, note that the state ma-
chine in Figure 5 is an abstraction of how the ap-
proximately 10 000 lines of code in the Java regular
expression matching library handles this particu-
lar regular expression. Analyzing the abstraction,
and understanding the discrepancies between the
abstraction and the real implementation, forms
the crux of developing a proper understanding of
regular expression matching libraries.

Next, we discuss the state machine in Figure 5 in
more detail. State q0 is the initial and q7 the �nal
state. Transitions not marked with any symbols, are
taken without reading or outputting any symbols.
Transition marked with “a” indicates that a is read
from the input (and produced as output), and “[” or
“]” on a transition indicates that the corresponding
bracket is produced as output. �e dashed lines
indicate lower priority transitions – they are only
taken if the higher priority transitions do not lead
to acceptance.

�e accepting path for the string an – i.e., a string
of length n having only a’s – in the state machine
in Figure 5, is q0q1(q2aq1)nq0q3; note that the ex-
ponent “n” simply indicates that the particular sub-
string should be repeated n times. Since there are,
for the input strings an, exponentially many paths
in this state machine, a regular expression matcher
using an input-directed depth-�rst search (without
memoization as in Perl), such as the Java implemen-
tation, will take exponential time in attempting to

12

match the strings anx, for n ≥ 0.
On an abstract level, a state machine associated

with a regular expression should be regarded as a
function. �e domain of this function is a subset
of all possible strings and is equal to the classical
interpretation of a regular expression. �e func-
tion values are de�ned in such a way to indicate
which subexpression captured which substring(s).
For the given regular expression (a*)* , the do-
main is a∗, and each string an in the domain is
mapped to [an]. �is indicates that the outer *

in (a*)* is used only once, and it corresponds to
the parse that is chosen by all implementations in
such ambiguous cases.

Next we provide more small and slightly arti�-
cial examples of regular expressions to point out
additional di�erences between regular expressions
in theory and practice. �e regular expressions
R = (a)(a*) and R′ = (a*)(a) are equiva-
lent in the traditional sense, but in practice, the
capturing happens in di�erent ways. An input
string an from a+ (i.e., one or more a’s) is captured
by R as [1a]1[2an−1]2, where as R′ captures it as
[1an−1]1[2a]2. Also note that the same subexpres-
sion in a regular expression may capture more than
one substring, for example, for (a∗ ∣ b)∗ the input
string apbqar is captured as [ap

][b] . . . [b][ar], for
p, q, r > 0.

We conclude this section on regular expressions
by discussing what happens when so�ware im-
plementations do not drive theory and standards.
Regular expressions are standardised in the ieee
posix1 standard for regular expressions. But the
real standard has become the implementation of
the regular expression matching library in the Perl

1Institute of Electrical and Electronics Engineers Portable
Operating System Interface, iso/iec/ieee 9945:2009.

q0 q1 q2 q3

q4

q5

q6

q7

[

]
a

Figure 5: Java based state machine for the regu-
lar expression (a*)*; dashed edges indicate lower
priority transitions.

programming language. Larry Wall, author of the
Perl programming language, describes this situa-
tion as follows [17]: “Perl regular expressions are
only marginally related to other regular expres-
sions. Nevertheless, the term has grown with the
capabilities of our pattern matching engines, so I’m
not going to try to �ght linguistic necessity here.
I will, however, generally call them [Perl regular
expressions] regexes, or regexen, when I’m in an
Anglo-Saxon mood”.

6 Conclusions

My main aim was to show that the disconnect be-
tween theory and practice provides ample opportu-
nity for interesting and useful research. In the case
of regular expression matching, theory in isolation
loses out on key features and relevance, whereas in
the case of so�ware, practical implementations lose
consistent semantics and o�en have unpredictable
matching time. A similar relationship between the-
ory and practice is, of course, also relevant to many
other disciplines. Finding the right mix between
theory and practice is, likewise, essential when de-
signing academic programs at universities (and
other educational institutions), and when coming
up with strategies to build successful and relevant
research teams.

13

References

[1] Martin Berglund and Brink van der Merwe. On the semantics of regular expression parsing in the wild. In Frank Drewes,
editor, Implementation and Application of Automata – 20th International Conference, CIAA 2015, Umeå, Sweden, August
18–21, 2015, Proceedings, volume 9223 of Lecture Notes in Computer Science, pages 292–304. Springer, 2015.

[2] Noam Chomsky. �ree models for the description of language. IRE Transactions on Information �eory, 2:113–124, 1956.

[3] Stephen A. Cook. �e complexity of theorem-proving procedures. In Michael A. Harrison, Ranan B. Banerji, and Je�rey D.
Ullman, editors, Proceedings of the 3rd Annual ACM Symposium on �eory of Computing, May 3-5, 1971, Shaker Heights,
Ohio, USA, pages 151–158. ACM, 1971.

[4] Russ Cox. Implementing regular expressions. http://swtch.com/~rsc/regexp/, 2007. Accessed March 3, 2015.

[5] Martin D. Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Complexity, and Languages (2nd Ed.): Fundamentals of
�eoretical Computer Science. Academic Press Professional, Inc., San Diego, CA, USA, 1994.

[6] Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation. In Neil D. Jones and Xavier Leroy,
editors, Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004,
Venice, Italy, January 14–16, 2004, pages 111–122. ACM, 2004.

[7] Je�rey Friedl. Mastering Regular Expressions. O’Reilly Media, Inc., 2006.

[8] David Harel. Computers Ltd.: What �ey Really Can’t Do. Oxford University Press, Inc., New York, NY, USA, 2000.

[9] Clay Mathematics Institute. Millennium problems. http://www.claymath.org/millennium-problems. Accessed
September 15, 2015.

[10] Perl Lover. Perl regular expression matching is NP-hard. http://perl.plover.com/NPC/. Accessed September 15,
2015.

[11] Wired Magazine. Obama says everyone should learn how to hack. http://www.wired.com/2013/12/obama-code/.
Accessed September 15, 2015.

[12] UK Department of Education. England national curriculum: computing programmes of study. https://www.gov.uk/
government/publications. Accessed September 15, 2015.

[13] Henry G. Rice. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc., 74:358–366,
1953.

[14] Kathryn Scanland, Steve Gu, and Roberts Jones. �e Jobs Revolution: Changing How America Works. Copywriters Inc.,
2004.

[15] Robert Sedgewick and Kevin Wayne. Introduction to Programming in Java: An Interdisciplinary Approach. Addison-Wesley
Publishing Company, USA, 1st edition, 2007.

[16] Udacity. Intro to theoretical computer science: Dealing with challenging problems. https://www.udacity.com. Ac-
cessed September 15, 2015.

[17] Larry Wall. Apocalypse 5: Pattern matching. http://www.perl6.org/archive/doc/design/apo/A05.html. Accessed
September 15, 2015.

[18] Wikipedia. Animal crackers (1930 �lm). https://en.wikipedia.org/wiki/Animal_Crackers_(1930_film). Ac-
cessed September 15, 2015.

[19] Wikiquote. Zawinski quotes. https://en.wikiquote.org/wiki/Jamie_Zawinski. Accessed September 15, 2015.

[20] GJ Woeginger. �e P-versus-NP page. http://www.win.tue.nl/~gwoegi/P-versus-NP.htm. Accessed September 15,
2015.

14

